Modeling Documents with Deep Boltzmann Machines

نویسندگان

  • Nitish Srivastava
  • Ruslan Salakhutdinov
  • Geoffrey E. Hinton
چکیده

We introduce a type of Deep Boltzmann Machine (DBM) that is suitable for extracting distributed semantic representations from a large unstructured collection of documents. We overcome the apparent difficulty of training a DBM with judicious parameter tying. This enables an efficient pretraining algorithm and a state initialization scheme for fast inference. The model can be trained just as efficiently as a standard Restricted Boltzmann Machine. Our experiments show that the model assigns better log probability to unseen data than the Replicated Softmax model. Features extracted from our model outperform LDA, Replicated Softmax, and DocNADE models on document retrieval and document classification tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Group Restricted Boltzmann Machines

Since learning in Boltzmann machines is typically quite slow, there is a need to restrict connections within hidden layers. However, the resulting states of hidden units exhibit statistical dependencies. Based on this observation, we propose using l1/l2 regularization upon the activation probabilities of hidden units in restricted Boltzmann machines to capture the local dependencies among hidde...

متن کامل

What is (missing or wrong) in the scene? A Hybrid Deep Boltzmann Machine For Contextualized Scene Modeling

Scene models allow robots to reason about what is in the scene, what else should be in it, and what should not be in it. In this paper, we propose a hybrid Boltzmann Machine (BM) for scene modeling where relations between objects are integrated. To be able to do that, we extend BM to include tri-way edges between visible (object) nodes and make the network to share the relations across differen...

متن کامل

Fast Inference and Learning for Modeling Documents with a Deep Boltzmann Machine

We introduce a type of Deep Boltzmann Machine (DBM) that is suitable for extracting distributed semantic representations from a large unstructured collection of documents. We propose an approximate inference method that interacts with learning in a way that makes it possible to train the DBM more efficiently than previously proposed methods. Even though the model has two hidden layers, it can b...

متن کامل

Modeling Documents with a Deep Boltzmann Machine

We introduce a type of Deep Boltzmann Machine (DBM) that is suitable for extracting distributed semantic representations from a large unstructured collection of documents. We overcome the apparent difficulty of training a DBM with judicious parameter tying. This enables an efficient pretraining algorithm and a state initialization scheme for fast inference. The model can be trained just as effi...

متن کامل

Transformation Equivariant Boltzmann Machines

We develop a novel modeling framework for Boltzmann machines, augmenting each hidden unit with a latent transformation assignment variable which describes the selection of the transformed view of the canonical connection weights associated with the unit. This enables the inferences of the model to transform in response to transformed input data in a stable and predictable way, and avoids learni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1309.6865  شماره 

صفحات  -

تاریخ انتشار 2013